江苏省气象台最新发布 江苏省气象台最新发布新闻

近日,中央气象台继续发布高温红色预警,我国多个省份迎来持续高温天气,部分地区最高气温可达40℃以上。今夏持续的高温使得各地用电量飙升,连续刷新用电负荷最高纪录。保供电是当下稳经济、促就业的关键之一,我国一直多措并举保证电力供应稳定。其间,基于大数据属性的虚拟电厂得到了社会关注。以满足5%的峰值负荷为例,相比火力发电厂动辄几千亿元的投资,虚拟电厂仅是其1/8-1/7。但在我国在虚拟电厂交易运行规则、新能源协调控制策略和调度算法等方面尚未构建统一标准下,再加上其盈利模式尚处于探索期,如何进一步推广应用仍是一个现实课题。

用电量持续攀升

据中国气象局统计,今年入伏以来,全国有141个国家气象站日最高气温达到40℃以上。8月14日,江苏省气象台发布路面温度预报,最高地表温度将达72℃,轮胎面临爆胎危险。

因持续高温晴热天气,南方地区已出现旱情。据新华社报道,今年6月中旬开始,长江流域降水由偏多转为偏少,7月偏少三成多,尤其是长江下游干流及鄱阳湖水系偏少五成左右,为近十年同期最少。

受此影响,长江中下游水位较历史同期大幅偏低。截至8月11日8时,长江中下游干流及两湖出口控制站水位均较常年同期偏低5-6米。8月11日,国家防汛抗旱总指挥部决定针对四川、重庆、湖北、湖南、江西、安徽等六省份启动抗旱四级应急响应。而干旱少雨则影响着水电出力。

用电需求高峰叠加水电受限,电力缺口扩大,电力生产进一步承压。

在高温天气下,用电量攀升。据国家能源局发布的1-7月全社会用电量数据,1-7月,全社会用电量累计49303亿千瓦时,同比增长3.4%。其中,7月,全社会用电量8324亿千瓦时,同比增长6.3%:分产业看,第一产业用电量121亿千瓦时,同比增长14.3%;第二产业用电量5132亿千瓦时,同比下降0.1%;第三产业用电量1591亿千瓦时,同比增长11.5%;城乡居民生活用电量1480亿千瓦时,同比增长26.8%。

组合拳保供电

在保供电举措上,国家电网今年主要通过号召节约用电、及时抢修一线电力设施和有序用电来保障电网安全和电力稳定供应。

有序用电是指错开用电高峰期不同用户的用电,通过行政措施、经济手段、技术方法等,控制部分用电需求,以确保大电网供电安全为前提,维护供用电秩序平稳有序。如将企业的生产由白天改到夜间,不仅可以有效降低用电高峰时段的负荷,也不会对企业产量造成影响。同时,企业还能从供电公司得到一笔补贴。

值得关注的是,我国还在电力生产端取了相应措施,保障火力稳供。

我国电力来源主要有火电、水电、核电、风电、太阳能等五种类型,火电一直是我国发电主力。根据观研报告网数据,2020年我国各类发电量中,火电发电量所占比重最高,为71.19%,水电发电量占比次之,为16.37%。

为保证火电及时供应,国家发改委今年出台多项政策打击变相哄抬煤价行为,将煤价调控在合理空间。国家统计局8月14日发布的2022年8月上旬流通领域重要生产资料市场价格变动情况显示,8月上旬各种煤炭价格均在下调,其中,可用来发电的电煤之一的无烟煤吨价1466.9元,比上期价格下降121.7元,降幅7.7%。

同时,我国对煤及褐煤进口量的扩大,也在一定程度上遏制了今年国内煤价上涨,避免再现2021年煤超疯的情况。据中国海关总署进口数据,7月我国进口煤及褐煤2352.3吨,较6月增长454.1吨。

此外,因拥有大量风能和光伏等绿能,我国也在加速推进新能源发电。国家电网有限公司董事长、党组书记辛保安在8月12日举行的2022一带一路清洁能源发展论坛上提出了我国新能源发展目标。他表示,随着双碳进程的深入推进,能源体系正在经历着一场系统性、根本性变革,能源供给结构正在深度调整,预计到2030年,我国风电、太阳能发电等新能源发电装机规模将超过煤电成为第一大电源,2060年前新能源发电量占比有望超过50%。

虚拟电厂走到台前

我国电力供应量整体处于稳定区间,短期内不会有太大的变化,面对持续高温天气下空调等用电负荷骤然加大的情况,加强电力调度尤为关键。厦门大学中国能源政策研究院院长林伯强表示,基于大数据的虚拟电厂的建设在今年被凸显出来。

什么是虚拟电厂?无锡数字经济研究院执行院长吴琦向北京商报记者介绍说,虚拟电厂其实就是一个基于大数据参与电网运行和电力市场的电源协调管理系统,对外表现为一个可控电源。以水电站为例,往年在发电过程中,因为缺乏上游电站的来水数据,所以无法及时调整发电负荷,制定明确的发电,水电站在汛期发电常常处在盲发状态。而在水电站连接了虚拟电厂平台之后,工作人员每天早上可以及时了解当天上游的出入库流量和发电情况,实现了上下游水文和发电数据的共享。

虚拟电厂的大数据属性,在生产端可以促进新能源发电消纳和降低企业生产成本,在需求端可以精准控制用电从而降低企业用电负荷。林伯强补充道。

得益于突出的调度优点,虚拟电厂的建设脚步在逐步加快。业内人士介绍,目前具备虚拟电厂功能的源荷聚合互动响应平台已经在湖南省投入运营,覆盖3300余座水电站、装机容量达730万千瓦。

在国内,国家电网已有虚拟电厂项目开始运营,浙江、上海等地也在积极探索相关项目的落地。以浙江为例,6月30日,在下午高峰负荷时段,浙江电网自主研发的智慧虚拟电厂平台正式投入商业化运营。温州鹿城银泰充电站在收到智慧虚拟电厂平台调控需求后,通过精准调控充电负荷,完成200千瓦的调控目标。

今年年中,各省政策密集出台,浙江、深圳、上海等用电大省市加速了虚拟电厂参与电网调控。2022年6月30日,国网浙江综合能源公司智慧虚拟电厂平台上线;2022年6月13日,深圳市发改委发布《深圳市虚拟电厂落地工作方案(2022-2025年)》。

具体到北京,2022年7月22日,北京市城市管理委员会发布的《北京市十四五时期电力发展规划》,首次将虚拟电厂的建设纳入电力发展规划中。

推广难不难

今年才火起来的虚拟电厂,其市场前景是业界关注的焦点。

根据国家电网测算,通过火电厂实现电力系统削峰填谷,满足5%的峰值负荷需要投资4000亿元;而通过虚拟电厂,在建设、运营、激励等环节投资仅需500亿-600亿元,虚拟电厂的成本仅为火电厂的1/8-1/7。

国家不可能为保障用电高峰时节用电需求建设相应数量的火电厂,而在用电量不高时将其闲置。通过合理的调度、有序用电才是解决高峰期用电的日常合理方案,基于大数据调度、投入相对更低的虚拟电厂性价比显然更高。林伯强解读道。

虽然具有一定的性价比,但投入成本绝对值并不低,虚拟电厂的复制推广需盈利支撑。国海证券分析师杨阳在7月26日发布的研报中表示,国家电投深圳能源作为我国首个虚拟电厂调度用户负荷参与电力现货市场盈利的案例,2022年5月平均度电收益0.274元。据中电联预计,2025年全社会用电量达9.5万亿千瓦时,而最大负荷将达到16.3亿千瓦,设可调节能力为5%、投资成本为1000元/千瓦,预计到2025年虚拟电厂投资规模有望达815亿元。

除市场规模外,36氪研究院发布的《2022年中国虚拟电厂行业洞察报告》(以下简称《洞察报告》)提出了虚拟电厂更完整的盈利模式,我国虚拟电厂一方面向可控收取服务费来帮助其参与市场交易;另一方面也可以获得需求响应补偿费用差价。其分析认为,当前,我国在虚拟电厂交易运行规则、聚合范围和新能源协调控制策略、调度算法等方面尚未构建统一标准,存在较展空间。

尽管如此,虚拟电厂仍有建设需要。《洞察报告》显示,在需求侧,我国东西部电力供需关系趋紧,电力峰谷差矛盾日益突出,各地年最高负荷95%以上峰值负荷累计不足50小时,亟须可靠的解决方案来应对。在供给侧,技术日渐成熟促使虚拟电厂成本不断下降。

整体而言,林伯强对虚拟电厂的前景十分乐观。在供应端,清洁能源如风电光伏等具有不稳定性;在需求端,生产企业也有降低负荷的需要。能够精准调度发电量的虚拟电厂前景广阔。不过,如何保障虚拟电厂建成后能如期盈利,是其推广过程中使用方较为担心的问题,需要通过电价市场化改革来解决。林伯强解释道。

专家预测今秋不会拉闸限电

谈到用电问题,2021年夏秋之交,我国从东北、华北到南方沿海数省都出现过大规模的拉闸限电现象,对经济和民生产生了一定影响,在当时引起关注。今年秋季是否还会出现拉闸限电的情况,仍牵动着众人的心弦,尤其企业生产者极为关注。

对此,厦门大学中国能源政策研究院院长林伯强表示,今年不会再出现拉闸限电现象。

他解释了去年拉闸限电的三个原因:首先,去年夏秋之交处于疫情后生产快速恢复阶段,社会用电量增长极快,电力供应一时难以跟上。其次,去年煤价飞涨,而电价市场化改革在当时尚未落地,煤电价格倒挂,生产电力的企业处于亏损状态,导致供电减少。最后,去年lsquo;能耗双控rsquo;的指标考核非常严格,地方在上半年管控较松,年底为了lsquo;突击完成任务rsquo;,只能用lsquo;拉闸限电rsquo;的手段降低总能耗。

来自国家能源局的数据佐证了林伯强的看法,2021年1-6月,我国全社会用电量累计39339亿千瓦时,同比增长16.2%。而2022年1-7月,全社会用电量累计49303亿千瓦时,同比增长3.4%。2021年上半年的用电量涨幅较2022年1-7月高12.8个百分点。

在国家的宏观调控和多种因素影响下,今年煤炭价格恢复到合理区间,lsquo;能耗双控rsquo;以及高耗电量都有了经验,不会再出现去年lsquo;拉闸限电rsquo;的现象。林伯强说道,整体来看,目前我国电力供应较为充足,即使供电紧张也只是局部的几天时间,除去去年电力需求增长特别快的情况,前十年我们的供应都没有出过问题,今后应该也不会有什么问题。

不过,长远来看,林伯强认为要解决未来供电问题,开源节流才是长久之计。事实上,我国在开源节流的道路上也不曾止步。

江浙沪连发147条气象预警是真的吗?

2022年09月1日会有降温。

根据江苏省气象台2022年9月1日06时发布:受台风云系影响,2-3日部分地区将有降温阵雨天气,全省北到东北风4级左右。

当气温发生骤降时,要注意添衣保暖,特别是要注意手、脸的保暖。

江苏省“高温**预警” 大范围高温天气仍将持续?

对的,台风“烟花”来势汹汹。截至7月24日下午4点,浙江省、江苏省、上海市气象部门接连发布预警147条,并且仍在生效中。其中浙江80条,江苏47条,上海20条。其中,仅24日一天,截至下午4点,浙江省就发布气象预警79条,江苏省发布44条,上海市发布20条。

中央气象台消息,截至24日16时,“烟花”中心位于浙江省象山县东南方向约315公里的东海南部海面(北纬27.4度、东经124.2度),中心附近最大风力有13级(40米/秒),最低气压为960百帕。

预计,“烟花”将以每小时15公里左右的速度向北偏西方向移动,逐渐向浙江中北部沿海靠近,强度变化不大,并将于25日夜里-26日早晨在浙江舟山到玉环一带沿海登陆 (台风级),登陆后强度逐渐减弱,井有可能在华东地区回旋少动。

未来江浙沪的天气情况:

受台风影响,24日浙江省雨势进一步加大,中东部和北部地区将有大到暴雨、局部有大暴雨或特大暴雨。台风影响期间 (23-29)累计雨量显示,浙江全省大部分地区200~350毫米、局部400~600毫米,个别地区可达1000毫米以上,太湖流域面雨量110~300毫米。

预计,24-26日江苏沿江和苏南地区将有大到暴雨、局部大暴雨,27-28日,淮河以南大部分地区仍将有大到暴雨、局部大暴雨。台风影响期间累计雨量: 苏南地区250~400毫米,沿江地区100~250毫米,江淮之间50~100毫米。

24日起,省内自东南沿海向内陆风力逐渐增大,陆上风力7~9级、阵风10~12 级;省内中南部沿海海面风力10~11 级、阵风12~14级;北部沿海9~11级、阵风11~13级。

杜苏芮台风影响江苏吗

近日:江苏省气象台继续发布“高温**预警”,预计2017年7月18日,苏州、无锡、常州、南京、镇江、泰州、南通、扬州大部分地区和盐城南部地区最高气温将升至37℃以上,“三伏天”开始发挥威力。省气象台专家介绍说,本周前期受副高南退和增强影响,淮北地区多雷阵雨,其它地区有午后局地雷阵雨,有雷雨地区可能伴有短时强降水和雷雨大风。

2017年7月18日讯昨天,省气象台继续发布“高温**预警”,预计2017年7月18日,苏州、无锡、常州、南京、镇江、泰州、南通、扬州大部分地区和盐城南部地区最高气温将升至37℃以上,“三伏天”开始发挥威力。

省气象台专家介绍说,本周前期受副高南退和增强影响,淮北地区多雷阵雨,其它地区有午后局地雷阵雨,有雷雨地区可能伴有短时强降水和雷雨大风。2017年7月20日-23日受副高控制,全省以晴好为主,高温范围扩大,强度增强,21日起全省大部分地区最高气温将达到36~39℃。

具体来看,2017年 7月18日,淮北地区多云到阴,有阵雨或雷雨,局部雨量大,其它地区多云,午后到上半夜局部有时阴有阵雨或雷雨。最低温度: 淮河以南地区28~29℃,其它地区26℃左右,最高温度: 淮北地区33~34℃,沿江和苏南地区37℃左右。19日,淮北地区多云,局部有阵雨或雷雨,其它地区晴到多云,午后到上半夜局部有时阴有阵雨或雷雨,最低温度: 淮北地区26℃左右,其它地区28~29℃,最高温度: 沿江和苏南地区36℃,其它地区34~35℃。

高温酷热,需注意防暑降温。

梅雨期2022

台风“杜苏芮”对江苏影响甚微,但会有明显风雨天气。

根据江苏省气象台的消息,今年第5号台风“杜苏芮”于7月28日在福建南部登陆,并且距离江苏较远,因此对江苏的影响较小。

虽然台风在长途跋涉中会减弱,但预计从28日夜间到30日,江苏大部分地区仍将经历8级左右的阵风,并伴有中到大雨,西部和北部的部分地区可能出现暴雨,局部地区可能会受到雷暴大风、短时强降水等强对流天气的影响。

此外,预计从28日夜里到30日白天,江苏的连云港、盐城和南通海区还将面临阵风9级左右的海上大风。

遭遇台风天气的注意事项:

1、检查准备措施:确保居民的应急准备措施是否完善,如储备足够的食物、水和急救用品等。同时,要检查居住区域是否安全,了解当地台风灾害风险和避险区域。

2、遵循官方指示:听从当地和相关部门的安排和指示。如果接到撤离通知,要立即执行,遵循指定的撤离路线及时间,确保人身安全。

3、检查设施安全:检查电路、煤气等设施是否安全,确保无漏电、泄露等情况。检查电话线路是否正常,确保与外界保持联系。

4、高层住宅注意事项:对于居住在高层住宅的人员,要将阳台外墙上、房顶上的花盆、杂物等转移至安全地带,以防被大风吹落造成伤害。

江苏冷空气最低温降至个位数

梅雨期2022

2022年7月8日-15日。

因为每个地区的气温不同,所以2022年出入梅花的时间也不同。但一般6月中旬入梅,7月上半月出梅,持续20天左右。但也有晚招晚走梅花的情况。比如2020年的梅雨区,梅花入梅早,出梅晚,持续时间长。当年,浙江在5月底正式进入梅雨季节,比以前提前了十天。

一般来说,2022年的雨季会在六月初开始,七月初结束,持续二十天左右。预计今年各地将在6月10日前后正式入梅,出梅时间在7月中旬。雨季来了,一定要注意家里的东西,多检查,不要发霉。

江苏泰州_梅雨2022年

1.2022年江苏什么时候入梅?

2022年江苏雨季6月23日正式进入5月。据江苏省气象台和南京市气象台最新召开的新闻发布会,宣布南京从6月23日起正式进入雨季。另外,江苏省淮河以南地区也有望在6月23日入梅,所以今年江苏的雨季是6月23日星期四。

1.江苏今年是大器晚成吗?

属于晚梅花。因为常年平均的梅花日是6月19日,今年的梅花日是6月23日,有点晚。由于梅雨带由北向南摆动,强对流天气多,有明显的间歇性降水和阶段性高温。同时,淮北也将从6月23日开始进入多雨期。

2.今年江苏五月雨季天气怎么样?

据江苏省气象台首席预报员最新介绍,今年雨季前期我省高温天气仍将持续,强对流天气将更加频繁。6月24日后,江苏省中北部地区预计将出现短时强降水、雷雨大风甚至冰雹天气,需多加防范。预计未来一周江苏将有两次明显降雨过程,分别在22日夜间至24日和27日至28日。23~26日,有短时强降水、雷暴大风、小冰雹等强对流天气。22日中北部、23日沿江、苏南、24-25日沿淮、淮北有35℃以上的高温天气。

3.今年江苏的梅雨量有多少?

梅雨平均量200-260毫米。其间淮北地区平均降雨量170-230毫米,较常年偏多。

2.2022年江苏梅花什么时候开?

据江苏省气象台首席预报员最新介绍,预计2022年7月中旬出梅。江苏近几年的梅雨持续时间如下:

1.2021年江苏省气象台发布梅雨预报,淮河以南局部地区于6月13日正式进入梅雨。

2.2020年江苏雨季从6月9日开始,7月21日结束,雨季持续43天。

3.2019年江苏6月18日至7月21日进入梅雨期。梅雨期的总长度为33天,比正常的梅期23至24天要长。

4.2016年江苏的雨季持续了32天。

一般来说,2022年江苏省雨季6月23日正式进入梅季,一般7月份出来。根据江苏省最新的天气预报,今年7月上旬将会出梅花。

无锡黄梅天过了吗2022

2022年梅雨季节时间在5月下旬至6月下旬出现。因为每年梅雨期发生在芒种和小暑这两个节气期间,而今年芒种是6月6日,而小暑是7月7日。

所以预计我国长江中下游地区梅雨季节将从6月上旬开始,而根据往年各地入梅时间来看,都不是统一的,会相隔几天。像2021年上海于6月10日入梅;江苏苏州6月10日入梅,淮河以南地区入梅6月13日才入梅。

注意。

2022入梅标准:连续5日平均气温超过22℃,有4天为雨天才算是入梅。而根据近期上海天气预报来看,还没有正式入梅,最低气温还在16-18度之间。

2020年到2022年疫情走势图

大数据疫情观察:全国疫情高峰过了么?

腾景宏观金融大势研判

2022-12-2317:23·来自北京

腾景宏观快报

2022年12月23日

大数据疫情观察:全国疫情高峰过了么?

——基于腾景AI高频模拟和预测

腾景高频和宏观研究团队

本期要点:

针对预测到底准不准,全国疫情是否已经见顶的问题,我们增加了28个城市的地铁客运量日度数据进行判断。非网民样本的缺失可能会导致预测结果有偏。

大数据不完美,应用大数据做宏观经济预测并非完美无缺,我们分析了谷歌流感趋势何以失灵。原因可能包括:媒体对谷歌流感趋势的大幅报道导致人们的搜索行为发生了变化,用户的搜索行为反过来也会影响GFT的预测结果。

当前全国疫情或尚未达峰,但是达峰进程可能会有所提前。借助地铁客运量数据进行验证,我们判断北京、石家庄、武汉、重庆等城市已经度过疫情峰值,成都、天津、长沙、南京、西安等城市尚未达峰。

一、预测到底准不准?预期与现实相互验证

在上期《大数据疫情观察:中心城市率先迎来峰值》报告中,我们分析并给出了北京和河北部分城市疫情已经迎来“拐点”,成都、昆明等城市将陆续见顶的预测判断。根据百度搜索指数数据,北京百度“发烧”搜索指数持续下降,“咳嗽”搜索指数后于“发烧”见顶,这基本上印证了我们模型的预测。但是,我们也注意到2022年12月17日全国范围内“发烧”指数见顶,这是否意味着全国疫情的见顶?如果这样,这个数据与一些防疫专家的春节前后见顶的判断就有所出入。也有专家认为全国疫情可能虽然尚未达峰,但是进程缩短了。

但根据字节跳动的“巨量算数”,抖音“发烧”搜索指数于12月17日见顶,但头条“发烧”搜索指数仍在震荡上行。在朋友圈广为传播的知乎“数据帝”的预测里面,2022年12月20日前后大部分省市相继达到感染高峰,那么,很多研究者都想确认的是,站在2022年12月23日,全国范围内的单日新增感染有没有达峰?有人认为预测很准,和自己这些天在互联网上对疫情的感知较为一致;有些人则认为不准,认为身边的亲戚朋友们都阳了,而预测进度条还不到一半,个人体感和预测结果有较大差异。

与此同时,我们注意到了在2022年12月16日前后,全国几乎所有城市、省份“发烧”搜索指数迎来了“先扬后抑”的脉冲式增长,后续日度数据再也没有高于16日当天的值。这意味着疫情最艰难的阶段已经度过了么?通过对百度、头条疫情病症搜索引擎数据进行数据挖掘和建模分析,可以为疫情未来趋势研判提供重要参考。不过我们理解,为了定量评价疫情进展,还需要引入更多数据。

由于没有权威数据作为参考,各类疫情的预测仅仅是基于直觉、推理或演绎的带有参数的模型预测,预测准不准,缺乏客观权威作为结果比较,所以很难客观衡量预测是否准确,只能通过参与这件预测的所有观众和读者通过微观的数据,周围疫情扩散程度去验证预测结果,一个城市不同群体感染的先后,不同城市感染达峰的节奏,都会对预测是否准确有不一样的理解。

模型有局限性,逻辑设的适用性,缺乏权威数据作为验证,难道就不需要预测了吗?托马斯·库恩和卡尔·波普尔就“科学哲学”这个概念展开了20世纪最具影响力的对峙。他们都以自己的方式深奥地从哲学的角度质疑科学的基本前提。库恩的《科学革命的结构》指出,即使现有的范式所预测的结果在现实中存在反例,现有的科学家也不会认为其范式有问题;只有可替代现有范式的新科学范式出现,并且反例达到了一定的数量,现有科学范式才可能被证伪,科学革命才会发生。从批判的角度来看对预测过程的否定也是发现新预测方法的过程。

量子基金的乔治·索罗斯推崇的哲学家卡尔·波普尔最著名的观点是科学是通过“可证伪性”进行的——人们无法证明设是正确的,甚至无法通过归纳法获得真理的证据,但如果设是错误的,则可以反驳它。根据波普尔的观点,只有可被经验证伪的理论体系才应被赋予真正的科学地位。因此,波普尔提倡大胆设,用证伪的方式去不断试错,不断修正,而不是提出说,然后到处找支持自己理论的根据。“证伪”也是索罗斯所一直推崇与实践的思考方式。

二、地铁客运量作为疫情达峰的重要观察指标

因此,我们从疫情出发,回到经济,从多维度验证疫情的峰值。地铁客运量无疑是很好的观察指标,一个有地铁城市的客运量受若干因素影响:1、出行管制,2、出行意愿,3、地铁的便利程度。

从数据上来看,北京、上海作为全国地铁保有量最高的两个城市,也是日均客运量最高的两个城市,地铁数据较高的反映了疫情的高低,同时地铁客运量的日度数据公布滞后1-3天,还算比较及时,从数据收集角度看,地铁数据来自于物联网设备自动集,人工干预的影响较小,数据具有充分的客观性,可以作为疫情的第二类主要观察变量。

图:上海地铁客运量

▲数据来源:Wind、腾景AI经济预测

上图是2019年12月至今的上海地铁客运量数据,比较明显的是2020年初的武汉疫情,2022年4月的上海疫情,和2022年12月的全国疫情。由于地铁客运量遵循周一至周五高,周六日低的原则,日度数据信息量有些冗余,后续我们通过比较周度平均数据,可以过滤短期的日内数据波动。

图:上海地铁客运量

▲数据来源:Wind、腾景AI经济预测

比较北京地铁客运量,也可以看出2022年4月,上海地铁停运7周左右,北京虽然没有停运,但周度地铁客运量均值从近三年日常的800万降低到100万以下。值得注意的是,2022年9月之后的北京地铁客运量明显低于上海,这一方面是疫情,另一方面也是北京地铁需要全网查验72小时核酸,11月24日进一步缩短到48小时,12月5日起这一政策被解除。

图:北京地铁客运量

▲数据来源:Wind、腾景AI经济预测

图:十大城市地铁客运量7日移动平均,协同性高度一致

▲数据来源:Wind、腾景AI经济预测

基于此数据,我们认为北京疫情高峰已过,但全国整体疫情高峰并非如百度搜索指数和头条指数显示的那样已经见顶,而是处于快速发展期。我们建立了四阶段数据模型,验证各城市是否达峰。如下图所示,北京、武汉、重庆、沈阳、石家庄、兰州、昆明地铁客运量已经企稳回升,目前处于第四阶段;成都、天津、长春、郑州、广州、厦门、深圳、西安、上海、南京等城市仍处于达峰进程中的第三阶段。由于移动平均有可能会带来数据滞后,后面,我们用真实数据做了测试。

图:疫情扩散进程

▲数据来源:腾景AI经济预测

图:国内部分城市地铁客运量

注:十大城市是指:北京、上海、广州、成都、南京、武汉、西安、苏州、郑州、重庆,下同。

▲数据来源:Wind、腾景AI经济预测

在以日度为单位的疫情进展中,如果当天地铁出行数据出现回升,应该主要看两个数据,第一是同比,第二看环比。

根据日度数据,北京地铁出行,无论是环比还是同比,均处于上行阶段,这与见顶判断一致,其他有可能见顶的是武汉、重庆、成都。而上海、广州、南京、苏州、西安等地铁客运量仍在持续下滑,这表明疫情仍在达峰进程中。

图:国内部分城市地铁客运量

▲数据来源:Wind、腾景AI经济预测

由于地铁客运量同比数据下滑严重,我们判断:上海、广州、南京、西安、苏州、郑州等城市的疫情仍在达峰进程中,北京、武汉、重庆同比转正,预计已度过疫情高峰。

图:28个城市地铁客运量及周度同比

▲数据来源:Wind、腾景AI经济预测

三、预期如何与现实相互影响?

放开疫情管制后的经验有很多,无论是疫情见顶的节奏,对消费,劳动参与率的影响,都有较多国家可以参考。这无疑给了我们一些预期,14亿人口的放开和中等规模人口国家放开又有所区别。国内传染病专家也在各类媒体上表示春节前后,明年一季度疫情达峰等等,释放这样的未来见顶信号。但是从北京和多数城市的感知中,疫情似乎见顶的早于我们的认知,那么到底哪里会出问题呢?

政策指标失灵:古德哈特定律

当多数互联网参与者都知道百度搜索指数能够间接代表疫情的时候,它可能就不准了,在某种程度上,它就是古德哈特定律在疫情上的体现。古德哈特定律是出自于英国经济学家查尔斯·古德哈特的说法,指的是:当一个政策变成目标,它将不再是一个好的政策。其中一种解释为:一项社会指标或经济指标,一旦成为一个用以指引宏观政策制定的既定目标,那么该指标就会丧失其原本具有的信息价值。

毫无疑问,在大多数人不知道“百度疫情指数”的重要性的情况下,它大概率还是有效的,内涵逻辑为搜索量大数据间接反映了大部分的居民自发的网络搜索行为,“发烧”搜索在一定程度上和阳性有症状是一回事。但是,在官方媒体和自媒体都在报道的情况下,这一指标会引发更多的搜索,而这些搜索和疫情本身并没有关系,而是互联网流量带来的效应。

网民搜索行为的偏移可能造成数据污染

我们比较了石家庄、兰州、北京、武汉、重庆、沈阳、昆明、成都、天津等城市的地铁客运量,发现都经历了政策放松而上行,疫情攀升客运量下行,疫情高峰度过再度上行这一数据变化模式。目前大部分城市仍处在疫情攀升客运量下行这一阶段,全国疫情的顶峰目前并没有到来,而百度指数给出的“发烧”搜索指数已经见顶,我们判断12月16日及之后的百度“发烧”搜索指数可能出现了异常,核心逻辑是12月16日,全国所有城市都出现了一个攀升,随后下降,这种能够同一时间影响所有城市的因素大概率不是以一定规律传播的造成的,而是其他因素造成的数据“污染”。

样本缺失:60岁及以上老年人非网民群体

我们知道百度指数、头条指数、微指数是基于海量网民行为数据进行数据挖掘分析的数据产品,因此非网民的行为数据自然被排除在研究样本之外。

中国互联网信息中心2022年8月31日发布的第50次《中国互联网络发展状况统计报告》显示,截至2022年6月,我国非网民规模为3.62亿,这是一个不小的基数。从地区来看,我国非网民仍以农村地区为主,农村地区非网民占比为41.2%。从年龄来看,60岁及以上老年群体是非网民的主要群体。据此可见,非网民地域上主要分布在农村地区,年龄上以60岁及以上老年群体为主。

这个基数不小的非网民群体检索行为的缺失导致本来应该出现的检索结果游离于样本之外,导致“发烧”等病症搜索指数被低估。根据美国疾病控制与预防中心的报告,患重症COVID-19的风险会随着年龄、残疾和基础疾病的增加而增加。在后期的奥密克戎期间,大多数院内死亡发生在年龄≥65岁的成年人和患有三种或更多种基础疾病的人群中。

图:世界各国家和地区每日确诊的COVID-19病例

注:由于检测有限,确诊病例数低于真实感染数,数据截至2022年12月21日

▲数据来源:约翰·霍普金斯大学CSSECOVID-19数据库,ourworldindata.org、腾景AI经济预测

图:世界各地区每日确诊的COVID-19病例

注:由于检测有限,确诊病例数低于真实感染数,数据截至2022年12月21日

▲数据来源:约翰·霍普金斯大学CSSECOVID-19数据库,ourworldindata.org、腾景AI经济预测

大数据不完美,谷歌流感趋势为何失灵?

早在1980年,未来学家阿尔温·托夫勒在《第三次浪潮》一书中,就提出了“大数据”的概念。自古至今,预测一直是人们十分期待的能力,而大数据预测则是数据最核心的应用,其逻辑是每一种非常规的变化事前一定有征兆,每一件事情都有迹可循,如果找到了征兆与变化之间的规律,就可以进行预测。

利用大数据方法和技术进行宏观经济研究和分析,在国际上已有先例。在大数据分析的视野中,它不仅仅是要搞清楚宏观统计规律,更要弄清宏观数据中的精细结构。基于研究的视角,大数据时代为宏观经济分析提供强大的支持,正在改变宏观经济研究范式。

各国央行等主流金融机构研发并用即时预测模型以实时追踪经济状态的变化,在被大量社会化信息淹没前就找到可靠的信息源,从而动态地调整对经济指标的预期。包括纽约联储的Nowcasting模型、WEI模型、亚特兰大联储的GDPNow模型以及英格兰银行的MIDAS模型等。

根据DidierSornette教授的“龙王”理论,极端的发生有两个条件:系统的一致性与协同性。当系统的一致性非常强时,黑天鹅式的极端容易发生。当系统的一致性和协同性同时加强时,会发生超越“黑天鹅”的更极端的“龙王”。

“黑天鹅”也好,“龙王”也好,都不是孤立的,而是一系列强烈关联的,体现了正反馈的强大作用。什么时候股市可以预测?关键就在于股市变化前后关联的程度。

2008年谷歌推出的GoogleFluTrends系统,其动机是能够及早发现疾病活动并迅速做出反应可以减少季节性流感和大流行性流感的影响,通过分析收集到的大量Google搜索查询,以揭示人群中是否存在流感样疾病。这个逻辑和想法其实很简单直观——如果你生病了,你很可能会在搜索引擎上搜索以查找信息,比如如何治疗。谷歌决定要跟踪这些搜索,并使用这些数据来尝试和预测流感流行,甚至在疾病控制中心等医疗机构能够做到之前。

2009年通过谷歌累积的海量搜索数据,“谷歌流感趋势”成功预测了H1N1流感在美国境内的传播,一战成名。有报告指出,谷歌流感趋势能够在美国疾病控制和预防中心报告流感爆发前10天预测区域性流感爆发。GFT这种预测能力显然具有重大的社会意义,可以为整个社会提前控制传染病疫情赢得先机。

于是谷歌在其网站上创建了一个奇特的方程式来计算出究竟有多少人感染了流感。简单理解的数据逻辑是这样的:人们的位置+谷歌上与流感相关的搜索查询+一些非常聪明的算法=美国流感患者的数量。

线性模型用于计算流感样疾病就诊的对数几率和相关搜索查询的对数几率:

P是医生就诊访问的百分比,Q是在前面的步骤中计算的与ILI相关的查询分数。β0是截距,β1是系数,ε而是误差项。

谷歌流感趋势已被证明不是一直准确的,尤其是在2011年至2013年期间,它高估了相对流感发病率,并且在2012年至2013年流感季节的一个时间段内预测就诊次数是CDC记录的两倍。2013年《自然》杂志发表的一篇文章称,谷歌流感趋势将流感病例高估了约50%。

可以看到,应用大数据做宏观经济预测并非完美无缺。经济学家、作家TimHarford认为,“谷歌流感趋势的失败凸显了不受约束的经验主义的危险”。对GFT失败的一种解释是,新闻中充斥着

图:谷歌流感趋势ILI估计与CDC估计的比较

▲数据来源:ImprovingGoogleFluTrendsEstimatesfortheUnitedStatesthroughTransformation,LeahJMartin,BiyingXu,YutakaYasui,腾景AI经济预测

2013年,谷歌调整了算法,并回应称出现偏差的“罪魁祸首”是媒体对GFT的大幅报道导致人们的搜索行为发生了变化。GFT也似乎没有考虑引入专业的健康医疗数据以及专家经验,同时也并未对用户搜索数据进行“清洗”和“去噪”。谷歌在2011年之后推出“推荐相关搜索词”,也就是我们今天很熟悉的搜索关联词模式。研究人员分析,这些调整有可能人为推高了一些搜索指数,并导致对流行发病率的高估。举例来说,当用户搜索“发烧”,谷歌会同时给出“喉咙痛和发烧”、“如何治疗喉咙痛”等关联推荐词,这时用户可能会出于好奇等原因进行点击,造成用户使用的关键词并非用户本意的现象,从而影响GFT搜索数据的准确性。用户的搜索行为反过来也会影响GFT的预测结果。在充斥媒体报道和用户主观信息的搜索引擎的喧嚣世界里,也同样存在“预测即干涉”悖论。国内搜索引擎指数上大概率也会出现类似的情况,这是我们结合GFT的经验对预期差异给出的一种解释。

图:巨量算数“发烧”关联搜索词

▲数据来源:巨量算数、腾景AI经济预测

参考文献

[1]CNNIC:第50次《中国互联网络发展状况统计报告》

[2]

[3]AdjeiS,HongK,MolinariNM,etal.MortalityRiskAmongPatientsHospitalizedPrimarilyforCOVID-19DuringtheOmicronandDeltaVariantPandemicPeriods—UnitedStates,April2020_June2022.MMWRMorbMortalWklyRep2022;71:1182_1189.DOI:

[4]

[5]

[6]Lazer,D.,R.Kennedy,G.King,andA.Vespignani.2014.“TheParableofGoogleFlu:TrapsinBigDataAnalysis.”Science343:1203_1205.

更多重磅研究成果请关注公众号“腾景AI经济预测”。

搜索

天津感染高峰预测

天津死了多少患者

全国疫情死亡总人数

中国疫情已死多少人

中央下达疫情最新政策

全国疫情最新消息

2022西安雨季一般在几月份

西安是比较有特色的一个城市,它有各种文化底蕴,还有各种美食小吃,深受人们喜欢。最近一段时间,西安地区总是下雨,一直处于阴雨天气之中,这个是比较正常的现象,它主要是受副热带高压、全球变暖以及地理位置影响导致的。

2021为什么西安9月喜欢下雨

1.副热带高压

九月,西安下了十多天的雨。从历年气象资料来看,西安9月份多雨是正常的。事实上,未来十天半的可能性相对较高。

西安属暖温带半湿润大陆性季风气候,雨量适中,四季分明。冬季寒冷,多风,多雾,少雨少雪;春天温暖、干燥、多风、多变;夏季炎热多雨,夏季干旱突出,雷雨大风;秋天天气凉爽。年降水量500~750mm,以夏秋季为主;西安夏秋两季长期处于副热带高压西北部,冬季盛行西南风和东北风。

副热带高压在北半球冬季占据太平洋。随着太阳直射点向北移动,副热带高压也逐渐向北移动。副热带高压西北缘易与冷空气结合形成降水。但受地形、副热带高压强度等因素影响,春季降水主要集中在华东和华南地区,也导致5月左右西安出现降水高峰。夏季,西安受副热带高压控制,短期暴雨较多。秋季来临时,副热带高压的西北边缘在向南退却时再次经过西安,导致9月份西安持续降水。

2.全球变暖

全球变暖的影响是复杂的。目前,降雨的总体体现是降雨带的北移,但这种北移并不仅仅是一种平移。其规模和范围具有地方特殊性。例如,在全球气温逐渐升高和降雨带北移的背景下,陕西省的降水量从20世纪90年代到新世纪初逐渐减少。

3.地理位置

事实上,西安所在的关中盆地水系并不丰富,水域面积相对较小,难以形成大量的局部热对流。盆地南部是秦岭山脉,是东部最高的山脉。对四川来说,西北太平洋副热带高压的西南气流将温暖潮湿的空气从印度洋输送到四川盆地,并在青藏高原北部遇到冷空气,在9月和10月在中国西部形成一场持续的秋雨。然而,由于秦岭的存在,许多暖湿气流在攀登秦岭南侧的过程中形成地形雨,很难进入关中盆地,这直接导致关中和汉中两种截然不同的干湿气候。

西安的雨季是什么时候

西安的雨季是7月、8月和9月。西安有两个明显的降水高峰,分别在7月和9月。西安市年平均降水量为558~750mm,由北向南递增。它每年都在变化。

9月,中国南部,即北回归线附近地区,远未降温,温暖的空气仍在那里盘旋,等待来自欧亚大陆深处的冷流将它们赶走。

不仅在中国南部,而且在南亚和中东的亚热带地区,他们也在等待同样的结果。此外,由于两个副热带高压都在沿海,大量的水蒸气也在蒸腾,但由于天气炎热,没有太多的水蒸气凝结成雨水。

从9月到10月,副热带高压向南移动,雨带返回中国西部。据说有阴雨天气。这场连绵不断的秋雨也有一个学名,叫做“中国西部的秋雨”和陕西的“秋雨”。它在中国西部的一些地区很常见,通常在9月份出现在西安。在南部副热带高压的影响下,天气一般持续约两至三个星期。

下雨天衣服怎么干得更快

1.纸巾压榨机

洗完衣服后,不管你怎么用力拧衣服,衣服上总是有很多水。你可以用纸巾熨衣服。纸巾吸水性很强。更多的纸巾可以使衣服上的水变干。

2.拧干毛巾

我们用干毛巾帮助拧干。首先用干毛巾裹住湿衣服,然后用力拧。这时,衣服上的水会被毛巾吸收。最好选择吸水性强的毛巾。

3.加入干毛巾,摇匀

我们也可以用洗衣机烘干。我们可以用洗衣机晾干一次,然后在第二

北方强冷空气“到货”在即,江苏最低气温将跌至个位数。

据江苏省气象台19日消息,目前北方有一股较强的冷空气正在东移南下,即日起自北向南影响江苏省。受其影响,淮北地区48小时内最低气温将下降9℃至11℃,其他地区下降5℃至8℃。至此,“暖秋”体验卡发放结束,个位数的气温将“一夜而至”。

据中央气象台通报,从全国范围看,立秋后,冷空气快速上线,中国大部地区气温陆续“跳水”,局地降温8℃至10℃。中国东北、华北、黄淮多地气温创下立秋后新低;南方大部在本周中后期将经历“换季式”降温。

降温的注意事项

1、适当的穿着

根据天气情况选择适当的服装是非常重要的。在较冷的天气中,穿上保暖且透气的衣物是必要的。多层次的穿着可以提供更好的保暖效果,同时也方便根据温度调节衣物的厚度。

2、室内温度控制

在家中,适当地控制室内温度也是很重要的。使用恰当的供暖设备或暖气系统,并保持室内温度在舒适范围内。避免长时间暴露在过低的室内温度中。

3、加强通风

要保持室内空气流通,启用家用空调时,每天早、中、晚均要开窗通风,开窗时注意保暖。

4、规律作息

生活有规律、适量运动、充足睡眠,睡前提倡热水泡脚。

本文链接:http://www.frpt.cn/tqyb/7165.html
免责声明:文章由网友分享发布,并不意味本站赞同其观点,文章内容仅供参考。此文如侵犯到您的合法权益,请联系我们立刻删除。